Systems Biology

Semester No	Code	Credit Hours
6/8	BI-438	3-0

Course description:

The purpose of the course is to introduce the students to the field of systems biology and to provide an understanding of the cell at systems level.

Textbooks:

Recommended Books

Latest editions of following books

- 1. Klipp, E., Wolfram L., Christoph W., Axel K., Hans L., and Ralf H., "Systems biology", Wiley.
- 2. Ullah, M., and Olaf W., "Stochastic approaches in systems biology", Springer.
- 3. Newman M., "Networks: An Introduction", Oxford University Press, USA.

Prerequisite:

Probability & Statistics, Linear Algebra & Differential Equations, Genomics

Course Learning Outcomes:

To the field of systems biology and to provide an understanding of the cell at systems level

Quizzes	10-15%
Assignments	5-10%
MSE	30-40%
ESE	40-50%

ASSESSMENT SYSTEM:

Week wise Lecture Plan:

Week	Lecture Topic		
1	Introduction to systems biology	1	

2	Modeling of biochemical systems		
3	Kinetic modeling of enzymatic reactions		
4	Law of mass action		1
5	Michaelis-Menten Kinetics, rate equation		
6	Model systems: lac operon, phages, plasmids and chemotaxis;		
7	Analysis of high throughput data		
8	Gene expression models	2	
9	MIDTERMS		
10	Stochastic modeling of biological systems		2
11	Chemical master equation		
12	Stochastic simulation	3	
13	Fluctuations in gene expression		3
14	Biological networks	4	
15	Network structure		4
16	Network dynamics and function		
17	Network motifs, network modularity		
18	END SEMESTER EXAMINATION		